On a conjecture involving cycle-complete graph Ramsey numbers

نویسندگان

  • Béla Bollobás
  • Chula J. Jayawardene
  • Jiansheng Yang
  • Yi Ru Huang
  • Cecil C. Rousseau
  • Zhang Ke Min
چکیده

It has been conjectured that r(Cnl Km) = (m 1)(n 1) + 1 for all (n, m) =1= (3,3) satisfying n ~ m. We prove this for the case m = 5. * This author is currently pursuing post-doctoral studies under Prof. Bollobas Australasian Journal of Combinatorics 22(2000), pp.63-71

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All cycle-complete graph Ramsey numbers r(Cm, K6)

The cycle-complete graph Ramsey number r (Cm,Kn ) is the smallest integer N such that every graph G of order N contains a cycle Cm on m vertices or has independence number (G) n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r (Cm,Kn )1⁄4 (m 1) (n 1)þ 1 for all m n 3 (except r (C3,K3 )1⁄4 6). This conjecture holds for 3 n 5: In this paper we will present a proof for n 1⁄4 ...

متن کامل

A conjecture of Erdős on graph Ramsey numbers

The Ramsey number r(G) of a graph G is the minimum N such that every red–blue coloring of the edges of the complete graph on N vertices contains a monochromatic copy of G. Determining or estimating these numbers is one of the central problems in combinatorics. One of the oldest results in Ramsey Theory, proved by Erdős and Szekeres in 1935, asserts that the Ramsey number of the complete graph w...

متن کامل

Generalised Ramsey numbers and Bruhat order on involutions

This thesis consists of two papers within two different areas of combinatorics. Ramsey theory is a classic topic in graph theory, and Paper A deals with two of its most fundamental problems: to compute Ramsey numbers and to characterise critical graphs. More precisely, we study generalised Ramsey numbers for two sets Γ1 and Γ2 of cycles. We determine, in particular, all generalised Ramsey numbe...

متن کامل

The Ramsey numbers for a cycle of length six or seven versus a clique of order seven

For two given graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer n such that for any graph G of order n, either G contains G1 or the complement of G contains G2. Let Cm denote a cycle of length m and Kn a complete graph of order n. It was conjectured that R(Cm,Kn) = (m−1)(n−1)+1 form ≥ n ≥ 3 and (m,n) 6= (3, 3). We show that R(C6,K7) = 31 and R(C7,K7) = 37, and the latter res...

متن کامل

A multipartite Ramsey number for odd cycles

In this paper we study multipartite Ramsey numbers for odd cycles. Our main result is the proof of a conjecture of Gyárfás, Sárközy and Schelp [12]. Precisely, let n ≥ 5 be an arbitrary positive odd integer; then in any two-coloring of the edges of the complete 5-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 there is a monochromatic cycle of length n. keywords: cycles, Ramsey number, Regular...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2000