On a conjecture involving cycle-complete graph Ramsey numbers
نویسندگان
چکیده
It has been conjectured that r(Cnl Km) = (m 1)(n 1) + 1 for all (n, m) =1= (3,3) satisfying n ~ m. We prove this for the case m = 5. * This author is currently pursuing post-doctoral studies under Prof. Bollobas Australasian Journal of Combinatorics 22(2000), pp.63-71
منابع مشابه
All cycle-complete graph Ramsey numbers r(Cm, K6)
The cycle-complete graph Ramsey number r (Cm,Kn ) is the smallest integer N such that every graph G of order N contains a cycle Cm on m vertices or has independence number (G) n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r (Cm,Kn )1⁄4 (m 1) (n 1)þ 1 for all m n 3 (except r (C3,K3 )1⁄4 6). This conjecture holds for 3 n 5: In this paper we will present a proof for n 1⁄4 ...
متن کاملA conjecture of Erdős on graph Ramsey numbers
The Ramsey number r(G) of a graph G is the minimum N such that every red–blue coloring of the edges of the complete graph on N vertices contains a monochromatic copy of G. Determining or estimating these numbers is one of the central problems in combinatorics. One of the oldest results in Ramsey Theory, proved by Erdős and Szekeres in 1935, asserts that the Ramsey number of the complete graph w...
متن کاملGeneralised Ramsey numbers and Bruhat order on involutions
This thesis consists of two papers within two different areas of combinatorics. Ramsey theory is a classic topic in graph theory, and Paper A deals with two of its most fundamental problems: to compute Ramsey numbers and to characterise critical graphs. More precisely, we study generalised Ramsey numbers for two sets Γ1 and Γ2 of cycles. We determine, in particular, all generalised Ramsey numbe...
متن کاملThe Ramsey numbers for a cycle of length six or seven versus a clique of order seven
For two given graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer n such that for any graph G of order n, either G contains G1 or the complement of G contains G2. Let Cm denote a cycle of length m and Kn a complete graph of order n. It was conjectured that R(Cm,Kn) = (m−1)(n−1)+1 form ≥ n ≥ 3 and (m,n) 6= (3, 3). We show that R(C6,K7) = 31 and R(C7,K7) = 37, and the latter res...
متن کاملA multipartite Ramsey number for odd cycles
In this paper we study multipartite Ramsey numbers for odd cycles. Our main result is the proof of a conjecture of Gyárfás, Sárközy and Schelp [12]. Precisely, let n ≥ 5 be an arbitrary positive odd integer; then in any two-coloring of the edges of the complete 5-partite graph K(n−1)/2,(n−1)/2,(n−1)/2,(n−1)/2,1 there is a monochromatic cycle of length n. keywords: cycles, Ramsey number, Regular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 22 شماره
صفحات -
تاریخ انتشار 2000